AMCELL 8300 ®

The first and only platform in the market able to mass-produce 3D Printed parts in metals and polymers.

AMCELL 8300® makes additive manufacturing a viable solution for high-volume manufacturing. An automated Industrial 3D Printer for 24/7 production of functional parts

Additive Manufacturing Solutions

Mass production Cost-Effective in metal and polymers

Accurate and functional parts

- Polymers
- Composites
- Metals
- High tolerance (ISO 2768)
- Mass production

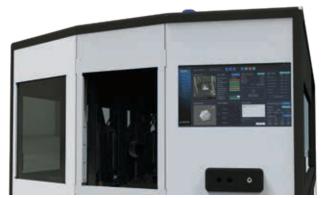
EVAM Software®

- Centralized control and monitoring
- Feedstock smart control
- Production optimization
- Printer integration
- Build simulation

- Scheduling
- Shopfloor connectivity
- Quality and process monitoring

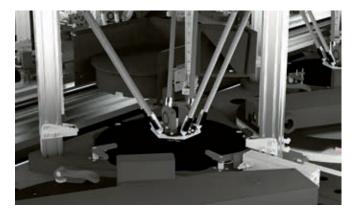
ADDITIVE MANUFACTURING

Traceability



How it works

AMCELL 8300[®] is an automated additive manufacturing cell for the mass production of high complexity and precise final parts, controlled by EVAM Software[®] to manage production orders, in-process control, and reduce machine downtimes.


AMCELL 8300 ®

Manufacturing orders, process monitoring, feedstock control, smart environmental control, are just some of the features that make AMCELL 8300[®] a real platform for mass production.

Software-controlled workflow and process monitoring

AMCELL 8300[®] includes EVAM Software[®], the most advanced production control and remote monitoring solution.

Automatic calibration

Each printhead is automatically calibrated before each printing job to ensure the highest quality of the final part.

Automatic ejection of printed parts

The printed part is ejected to the automatic storage module and a new platform is loaded to ensure 24/7 production.

Automatic storage Traceability and automatic storage of printed parts.

AMCELL 8300 ®

Technical information

AM technology Build rate Maximum printing height Maximum printing area Extruder system Nozzle diameter Manufacturing materials

Minimum layer height Number of robots Build chamber External and weight dimensions

Manufacturing platforms

Platform change system Ejection system Build platform Build platform material Build platform calibration Final parts storage

Automated Multimaterial Deposition (AMD Technology®) 8 tons metal/year - 2 tons polymer/year 300 mm 260 mm Direct (+ secondary extruder). Filament sensor integrated 0.4 - 1.2 mm Polymers: ABS, ASA, CPE, HIPS, IGLIDUR I150, PA, PC, PETG, PLA, PP, TPU, VINYL. Composites: PA+ARAMIDE, PA+CF, PC+ABS, PC+PBT. Metals: SS 316, SS 17-4 PH, Inconel, Titanium. 50 µm 1 Heated with temperature control, Bofa® filtering system 3,4 x 2 x 2 m. Unladen weight: 1300 kg. Loaded weight: 1700 kg

Automatic PTS Platform Transfer System Heated, up to 150°C Vitroceramic glass (customizable) Automatic Automatic TRACED

MEX (Material extrusion); MMEX (Metal Material Extrusion)

Mex is an additive manufacturing process in which material is selectively dispensed through a nozzle to manufacture parts in polymers, composites, and metals

How MMEX works for printing metal parts:

1. Green part

The green part is manufactured layer by layer extruding Metal Feedstock.

2. Debinding During the debinding removed through a



process. The binder is debinding process.

3.Sintering During the sintering process, the part is heated, the metal particles are redistributed and bonded.

4. Final part

Once the process is finished, a 100% metallic part is obtained with a density higher than 99%.

Pulley support produced with AMCELL® using PLA and Stainless Steel 316L without surface finish.

Metals

STAINLESS STEEL 316L

Metal polymer composite filament to produce metal components in an austentic stainless steel type 316L.

Standards DIN 1.4404, X 2 CrNiMo 17 13 2, AISI 316L; UNS S31603

Material density	7,83 g/cm³	ISO 1183-1
Yield Strength, Rp 0.2	174 MPa	DIN EN ISO 6892-1
Tensile strength	561 MPa	DIN EN ISO 6892-1
Vickers Hardness	128 HV10	DIN EN ISO 6507-1

17-4 PH

Material density	880 MPa	DIN EN ISO 6892-1
Yield Strength, Rp 0.2	680 MPa	DIN EN ISO 6892-1
Tensile strength	5,8%	DIN EN ISO 6892-1
Vickers Hardness	257 HV 10	DIN EN ISO 6507-1

TITANIUM

Titanium filament manufacturing offers the possibility of producing complex shaped parts with quality at a very competitive cost.

Material density Yield Strength, Rp 0.2 Tensile strength Rm Elongaton A 4,43 g/cm ³ 920 MPa 1005 MPa 14%

COMING SOON: INCONEL AND M4

Polymers

CPE

- Excellent mechanical & chemical properties
- Excellent surface finish
- High printability
- Food contact approved

ASA

- Excellent outdoor resistance
- Excellent surface finish
- Good dimensional stability
- Production of functional parts

HIPS

- High impact resistance
- Excellent surface quality
- High printability
- Food contact approved

IGLIDUR I150

- Excellent mechanical properties
- Used in parts subjected to wear
- Food contact approved

PLA

- Excellent surface finish
- High printability
- Biodegradable by composting
- Food contact approved

PA

- Chemical & wear resistance
- Used in electrical and electronic components
- Good functionality under temperature
- Food contact approved

TPU

- Elastic material
- Good tear strength in all directions
- Chemical & abrasion resistance
- Used in electrical and electronic components

PP

- Electrical insulator & thermal resistance
- High dimensional stability
- Easily recycled
- Food contact approved

PVC

- Excellent surface finish
- Corrosion resistance
- High tensile strength and hardness
- Used in electrical and electronic components

ABS

- Good surface finish
- Production of functional parts

	Density	Tensile Strength	Tensile Modulus	Elogation at break	lzod impact strength	Vicat softening temperature	Heat distortion temperature
СРЕ	1,25 g/cm ASTM D792	47 MPa ASTM D638	-	150% ASTM D638	No break ASTM D256	-	80°C ASTM D648
ASA	1,07 g/cm ASTM D792	40 MPa ASTM D638	1726 MPa ASTM D638	35% ASTM D638	441 J/m ASTM D256	94°C ASTM D1525	86/96°C ASTM D648
HIPS	1,05 g/cm ISO 1183	26 MPa ISO 527	-	40% ISO 527	No break ISO 179eU	88,5°C ISO 306	85/89°C ISO 75
IGLIDUR 150	1,3 g/cm	-	-	-	-	-	-
PLA	1,4 g/cm ASTM D792	60/32 MPa ASTM D882	3600 MPa ASTM D882	6% ASTM D882	16 J/m ASTM D256	-	55°C ASTM E2092
РА	1,4 g/cm ISO 1183	200 MPa ISO 527	-	-	-	140°C ISO 306	110°C ISO 75
TPU	1,20 g/cm ISO 1183-1	49 MPa DIN 53504	7,5/16 MPa DIN 53504	600% DIN 53504	-	-	-
РР	0,96 g/cm ISO 1183A	23 MPa 150 527	1400 MPa ISO 527	20% ISO 527	-	-	-
PVC	1,35 g/cm 10-LA 022	49 MPa 10-LA 049	-	13,1% 10-LA 049	-	71 °C ISO 306	-
ABS	1,04 g/cm ISO 1183	39/32 MPa ISO 527	-	20% ISO 527	24/10 kJ/m ISO 180+1A	103/96°C ISO 306	81°C ISO 75-A

Composites

PA+CF

- High strength, hardness and rigidity.
- High-technical durable long-life material.
- Good properties also at low temperatures.
- Easy to print.

PA+Aramid

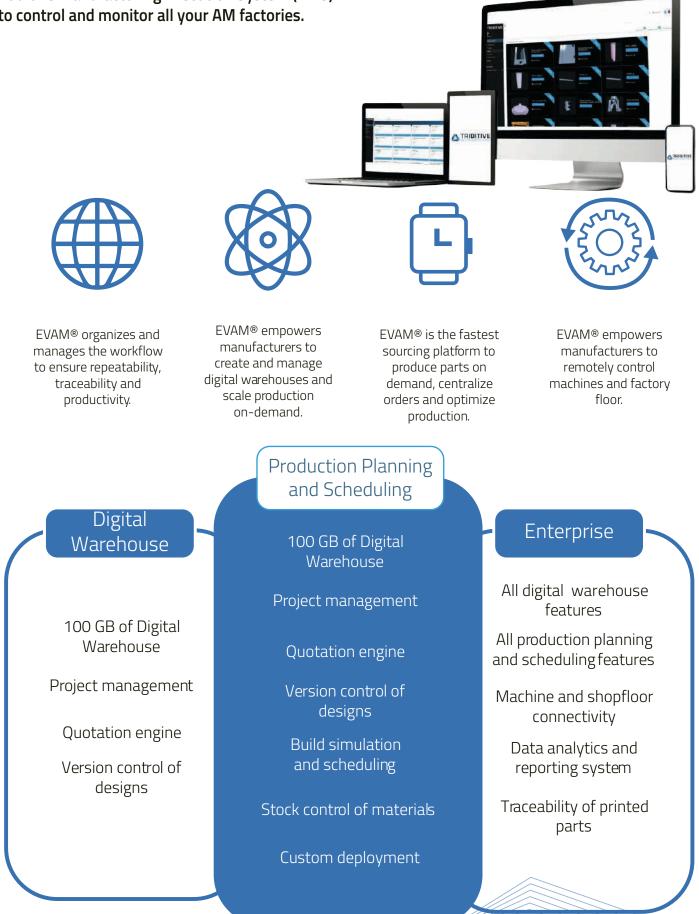
- The reinforcement with aramid fibers gives it tribological.
- properties and wear resistance.
- Smooth surface.
- Properties kept in a wide range of temperatures.

PC+PBT

- Chemical resistance.
- Easy to print, glossy finish.
- PC gives it good impact resistance and PBT good lubrication.

PC+ABS

• Great mechanical properties such as impact resistance, flexural strength.


- Excellent temperature resistance.
- Smooth finish.
- Resistant to chemicals wear and long-term loads.

	Density	Tensile Strength	Tensile Modulus	Elogation at break	Izod impact strength	Vicat softening temperature	Heat distortion temperature
PA+CF	1,25 g/cm ASTM D792	54,5 MPa ISO 527	103% ISO 527	103% ISO 527	-	-	-
PC+ABS	1,07 g/cm ASTM D792	42 MPa ISO 527-1,2	7% ISO 527-1,2	7% ISO 527-1,2	55/41 J/m ISO 180-1A	113/115 °C ISO 306	-
PC+PBT	1,05 g/cm ISO 1183	2050 MPa ISO 257	-	-	-	155°C ISO 306	105°C ISO 75
ARAMID	1,3 g/cm	42 MPa ISO 527-1,2	7% ISO 527-1,2	7% ISO 527-1,2	55/41 J/m ISO 180-1A	113/115 ℃ ISO 306	-

EVAM Software®

Additive manufacturing Execution System (MES) to control and monitor all your AM factories.

ADDITIVE MANUFACTURING

Triditive leads the way in Additive Manufacturing automation. AMCELL® is an industrial 3D printer for mass production of metals and polymers.

TRIDITIVE ESPAÑA

Ctra. Oviedo-Santader km 8 Meres, Asturias, Spain, 33199 Phone: (+34) 984 200 010

TRIDITIVE USA

1 Constitucion Plaza, 2nd Floor. Hartford, Connecticut. 06103 Phone: (+1) 860 502 2255

CONTACT

info@triditive.com www.triditive.com

